A national and international building energy standard for new commercial, institutional, and mid- to high-rise residential buildings.
ZERO CODE™

Architecture 2030 Building Energy Standard
Energy Efficiency Requirements Based on ASHRAE Standard 90.1-2016

CONTENTS

INTRODUCTION
 ENERGY EFFICIENCY ... 2
 RENEWABLE ENERGY ... 2
 ZERO CODE ENERGY CALCULATOR ... 3

THE ZERO CODE
 1. PURPOSE .. 4
 2. SCOPE .. 4
 3. DEFINITIONS ... 4
 4. ADMINISTRATION AND ENFORCEMENT 7
 5. MINIMUM ENERGY EFFICIENCY .. 9
 6. RENEWABLE ENERGY ... 11
 7. REFERENCES ... 15

ZERO Code Development:
 Charles Eley, FAIA, PE, Architecture 2030 Senior Fellow
 Architecture 2030 Support:
 Edward Mazria FAIA, FRAIC, CEO
 Vincent Martinez, COO
 Review: Andrew Lee, Erin McDade, Lindsay Rasmussen

DISCLAIMER
Architecture 2030 does not guarantee, certify, or assure the safety or performance of any buildings, products, components, or systems installed in accordance with the ZERO Code or referenced standards.
In referring to the ZERO Code and in the design of any building or use of any product, no claim shall be made, either stated or implied, that the building or product has been approved by Architecture 2030.
The ZERO Code standard is presented solely as a guide, which may be modified and consequently adopted as such by appropriate legal jurisdictions. In utilizing the ZERO Code standard or Energy Calculator, practitioners must research and ensure compliance with ordinances and codes applicable in their jurisdictions.
INTRODUCTION
The ZERO Code is a national and international building energy standard developed by Architecture 2030 that applies to new commercial, institutional, and mid- to high-rise residential buildings, the prevalent building types being constructed in cities today. The ZERO Code, which can be adopted immediately, integrates cost-effective energy efficiency standards with on-site and/or off-site renewable energy resulting in Zero-Net-Carbon (ZNC) buildings. The ZERO Code can either be incentivized or required by implementing jurisdictions. Adoption of the ZERO Code is an important component of addressing climate change and reducing CO₂ emissions in these building types.

ENERGY EFFICIENCY
Complying with the ZERO Code entails first meeting the minimum prescriptive or performance requirements for building energy efficiency defined by ASHRAE Standard 90.1-2016. As part of a standardized and predictable process to continue to advance energy efficiency, new standards that exceed ASHRAE Standard 90.1-2016 have been incorporated into the ZERO Code, such as the 2018 International Green Construction Code (IgCC) and ASHRAE Standard 189.1-2017. Newer versions of ASHRAE 90.1, 189.1 and the IGCC will be incorporated as they are published. Once the minimum energy efficiency requirements are met, then the on-site and/or off-site renewable energy is calculated to achieve zero-net-carbon.

RENEWABLE ENERGY
The ZERO Code offers code adaptable language and a flexible approach for incorporating renewable energy, both through on-site generation and/or off-site procurement. By establishing a flexible approach, the ZERO Code is applicable to all new commercial and institutional buildings, and mid- to high-rise housing, including those buildings with limited on-site renewable energy generating capacity (e.g. buildings in dense urban environments).

A technical support document is available that describes several potential options for off-site procurement of renewable energy within the context of codes and presents a process for evaluating and assigning a weight to each procurement method. The feasibility/desirability of each option will vary with how the electric system is structured and the laws and regulations applicable to each city, state, province, country or local jurisdiction that adopts the ZERO Code. It is anticipated that qualifying off-site renewable energy systems and their weightings will vary with each adoption of the ZERO Code. The purpose of the technical support document is to provide information to enable these adaptations.
ZERO CODE ENERGY CALCULATOR

The ZERO Code is supported by an Energy Calculator that eases the implementation process and reduces errors when applying the prescriptive compliance path of ASHRAE 90.1-2016. An Application Program Interface (API) for the ZERO Code Energy Calculator has been developed so that users can interact in a programmatic way with the software, enabling its implementation as a website or application for smart phones and tablets. Ultimately this approach will save years and valuable resources that would otherwise be spent on developing new compliance tools and mechanisms. The ZERO Code Energy Calculator API is free and open source.

For access to the ZERO Code Energy Calculator API documentation, or for information about incorporating the International Green Construction Code (IgCC), ASHRAE Standard 189.1-2017 or other building energy standard, please contact Architecture 2030 at info@architecture2030.org.
THE ZERO CODE

1. PURPOSE

The purpose of the ZERO Code is to provide a national and international building energy standard that establishes the minimum energy efficiency requirements of buildings other than low-rise residential buildings and requires renewable energy systems of adequate capacity to achieve zero-net-carbon.

2. SCOPE

This standard applies to new buildings that are addressed by Standard 90.1-2016. The provisions of this standard do not apply to

a. single-family houses, multifamily structures of three stories or fewer above grade, manufactured homes (mobile homes), and manufactured houses (modular) or

b. buildings that use neither electricity nor fossil fuel.

3. DEFINITIONS

The definitions from Standard 90.1-2016 apply to this standard and are supplemented or modified by the definitions below. Throughout this standard, defined terms from either Standard 90.1-2016 or this standard are shown in italics.

[Informative Note: Definitions from Standard 90.1-2016 are shown in grey for convenience to the reader. References from Standard 90.1-2016 definitions are to sections in that standard.]

adjusted off-site renewable energy: the amount of energy production from off-site renewable energy systems that may be used to offset building energy.

authority having jurisdiction: the agency or agent responsible for enforcing this standard.

baseline building design: a computer representation of a hypothetical design based on the proposed design. This representation is used as the basis for calculating the baseline building performance for rating above-standard design or when using the performance rating method as an alternative path for minimum standard compliance in accordance with Section 4.2.1.1.

baseline building EUI: the energy utilization intensity of the baseline building design. See also the definition of energy utilization intensity.

building: any structure used or intended for supporting or sheltering any use or occupancy.
Building energy: Energy consumed at the building site as measured at the site boundary. At minimum, this includes heating, cooling, ventilation, domestic hot water, indoor and outdoor lighting, plug loads, process energy, elevators and conveying systems, and intra-building transportation systems. Contributions from on-site or off-site renewable energy systems shall not be considered when determining the building energy.

Building project: a building, or group of buildings, and site that utilize a single submittal for a construction permit or that are within the boundary of contiguous properties under single ownership or effective control.

Conditioned floor area, gross: see floor area, gross.

Conditioned space: see space.

Energy utilization intensity (EUI): the site energy for either the baseline building or the proposed building divided by the gross conditioned floor area and the semiheated floor area of the building. For the baseline building, the EUI can be divided between regulated energy use and unregulated energy use.

Floor area, gross: the sum of the floor areas of the spaces within the building, including basements, mezzanine and intermediate-floored tiers, and penthouses with a headroom height of 7.5 ft or greater. It is measured from the exterior faces of walls or from the centerline of walls separating buildings, but excluding covered walkways, open roofed-over areas, porches and similar spaces, pipe trenches, exterior terraces or steps, chimneys, roof overhangs, and similar features.

- **Gross building envelope floor area**: the gross floor area of the building envelope, but excluding slab-on-grade floors.
- **Gross conditioned floor area**: the gross floor area of conditioned spaces.
- **Gross lighted floor area**: the gross floor area of lighted spaces.
- **Gross semiheated floor area**: the gross floor area of semi-heated spaces.

Performance rating method: a calculation procedure that generates an index of merit for the performance of building designs that substantially exceeds the energy efficiency levels required by this standard or when using the performance rating method as an alternative path for minimum standard compliance in accordance with Section 4.2.1.1.

Proposed building EUI: the EUI calculated for a proposed design.

- **Proposed building EUI without renewables (EUI_{PB,EE})**: the proposed building EUI without consideration of on-site renewable energy or off-site renewable energy.
- **Proposed building EUI with on-site renewables (EUI_{PB,EE+RE})**: the proposed building EUI with consideration of on-site renewable energy, but not off-site renewable energy.
proposed building EUI with on-site and off-site renewables (EUI\textsubscript{PB,EE+RE+pRE}): the proposed building EUI with consideration of both on-site renewable energy or off-site renewable energy.

regulated energy use: energy used by building systems and components with requirements prescribed in Sections 5 through 10. This includes energy used for HVAC, lighting, service water heating, motors, transformers, vertical transportation, refrigeration equipment, computer-room cooling equipment, and other building systems, components, and processes with requirements prescribed in Sections 5 through 10.

renewable energy: energy generated by photovoltaic systems, solar thermal power plants, geothermal power plants, and wind turbines.

 on-site renewable energy: renewable energy generated by systems on the building project.

 off-site renewable energy: renewable energy generated by systems not located on the building project.

site: a contiguous area of land that is under the ownership or control of one entity.

site energy: energy consumed at the building site as measured at the site boundary. At minimum, this includes heating, cooling, ventilation, domestic hot water, indoor and outdoor lighting, plug loads, process energy, elevators and conveying systems, and intra-building transportation systems.

space: an enclosed space within a building. The classifications of spaces are as follows for the purpose of determining building envelope requirements:

 conditioned space: a cooled space, heated space, or indirectly conditioned space defined as follows:

 a. cooled space: an enclosed space within a building that is cooled by a cooling system whose sensible output capacity is \(\geq 3.4 \text{ Btu/h-ft}^2 \) of floor area.

 b. heated space: an enclosed space within a building that is heated by a heating system whose output capacity relative to the floor area is greater than or equal to the criteria in Table 3.2.

 c. indirectly conditioned space: an enclosed space within a building that is not a heated space or a cooled space, which is heated or cooled indirectly by being connected to adjacent spaces, provided:

 i. the product of the \(U \)-factors and surface areas of the space adjacent to connected spaces exceeds the combined sum of the product of the \(U \)-factors and surface areas of the space adjoining the outdoors, unconditioned spaces, and to or from
semiheated spaces (e.g., corridors) or

ii. that air from heated or cooled spaces is intentionally transferred (naturally or mechanically) into the space at a rate exceeding 3 ach (e.g., atria).

semiheated space: an enclosed space within a building that is heated by a heating system whose output capacity is greater than or equal to 3.4 Btu/h·ft² of floor area but is not a conditioned space.

unconditioned space: an enclosed space within a building that is not a conditioned space or a semiheated space. Crawlspace, attics, and parking garages with natural or mechanical ventilation are not considered enclosed spaces.

unregulated energy use: energy used by building systems and components that is not regulated energy use. (See regulated energy use.)

zero-net-carbon (ZNC) building: a highly energy efficient building that produces on-site, or procures, enough carbon-free energy to meet building operations energy consumption annually.

ZERO Code Energy Calculator: calculator available from Architecture 2030 that may be used to estimate the building EUI without renewables for the prescriptive path.

zero energy performance index (zEPI_{PB,EE}): the ratio of the proposed building EUI without renewables to the baseline building EUI, expressed as a percentage.

4. ADMINISTRATION AND ENFORCEMENT

4.1 Compliance

New buildings shall comply with Section 5 (Minimum Energy Efficiency) and Section 6 (Renewable Energy).

4.2 Compliance Documentation

4.2.1 Construction Details

Compliance documents shall show all the pertinent data and features of the building, equipment, and systems in sufficient detail to permit a determination of compliance by the authority having jurisdiction and to indicate compliance with the requirements of this standard.

4.2.2 Supplemental Information

Supplemental information necessary to verify compliance with this standard, such as calculations, worksheets, compliance forms, vendor literature, contracts for off-site
renewable energy procurement, or other data, shall be made available when required by the authority having jurisdiction.

4.2.3 Manuals

Operating and maintenance information shall be provided to the building owner. This information shall include, but not be limited to, the information specified in Sections 6.7.2.2, 8.7.2, and 9.7.2.2 of Standard 90.1-2016.

4.3 Labeling of Material and Equipment

Materials and equipment shall be labeled in a manner that will allow for a determination of their compliance with the applicable provisions of this standard.

4.4 Inspections

All building construction subject to the provisions of this standard shall remain accessible and exposed for inspection purposes until approved in accordance with the procedures specified by the authority having jurisdiction.

4.5 Verification and Commissioning Reporting

Where reporting is required, the authority having jurisdiction or other approved agencies shall report to the contractor their findings of conformance and nonconformance for correction.

If the nonconforming work is found not to be corrected within a predetermined time as agreed upon by the contractor, the nonconforming work shall be reported in writing to the authority having jurisdiction and design professional. At a time agreed on by the authority having jurisdiction or other approved agencies, a final report shall be submitted to the building official and the contractor that outlines the inspection findings and documents the correction of nonconforming work.

4.6 ZERO Code Energy Calculator

The ZERO Code Energy Calculator, available from Architecture 2030, may be used to estimate building energy use when the prescriptive path is used, and to estimate the potential for on-site renewable energy production and/or off-site procurement.
5. MINIMUM ENERGY EFFICIENCY

Buildings shall comply with either 5.1 or 5.2.

5.1 Prescriptive Requirement

Buildings shall comply with Standard 90.1-2016 including:
- Section 5, “Building Envelope”;
- Section 6, “Heating, Ventilating, and Air Conditioning”;
- Section 7, “Service Water Heating”;
- Section 8, “Power”;
- Section 9, “Lighting”; and
- Section 10, “Other Equipment”.

5.2 Performance Requirement

The proposed building zero energy performance index without consideration of renewable energy (zEPI_{PB,EE}) shall be less than or equal to the zero energy performance index target (zEPI_{Target,EE}) when calculated in accordance with the performance rating method of Standard 90.1-2016 (Appendix G).

\[zEPI_{PB,EE} \leq zEPI_{Target,EE} \]

where

\[zEPI_{PB,EE} = \left[\frac{EUI_{PB,EE}}{EUI_{BB,EE}} \right] \times 100 \]

and

\[zEPI_{Target,EE} = \left[\frac{EUI_{BB,UEU} + (BPF \times EUI_{BB,REU})}{EUI_{BB,EE}} \right] \times 100 \]

and

- \(zEPI_{PB,EE} \) = the zero energy performance index of the proposed building without consideration of renewable energy, unitless (see equation)
- \(zEPI_{Target,EE} \) = the zero energy performance index target without consideration of on-site or off-site renewable energy, unitless (see equation)
- \(EUI_{PB,EE} \) = the proposed building EUI without renewable energy, kWh/m²-y, MJ/m²-y, or kBtu/ft²-y
- \(EUI_{BB,EE} \) = the baseline building EUI, including both regulated energy use and
unregulated energy use, kWh/m²-y, MJ/m²-y, or kBtu/ft²-y. The baseline building has no renewable energy systems and is defined in Standard 90.1-2016, Appendix G.

\[\text{EUI}_{BB,UEU} = \text{baseline building unregulated EUI}, \text{the portion of the baseline building EUI that is due to unregulated energy use, kWh/m}^2 \text{-y, MJ/m}^2 \text{-y, or kBtu/ft}^2 \text{-y} \]

\[\text{EUI}_{BB,REU} = \text{baseline building regulated EUI, the portion of the annual energy use of the baseline building design that is due to regulated energy use, kWh/m}^2 \text{-y, MJ/m}^2 \text{-y, or kBtu/ft}^2 \text{-y} \]

\[\text{BPF} = \text{building Performance Factor from Table 5.2, unitless} \]

[For building area types not listed in Table 5.2 use “All others.” Where a building has multiple building area types, the BPF shall be the area-weighted average of the building area types.]

[Informative Note: Zero Energy Performance Index (zEPI) as defined here uses a baseline building definition from Standard 90.1-2016 Appendix G, as opposed to the traditional zEPI baseline which represents a turn-of-the-millennium building.]

Table 5.2 Building Performance Factor (BPF)

| Building Area Type | 0A/1A | 0B/1B | 2A | 2B | 3A | 3B | 3C | 4A | 4B | 4C | 5A | 5B | 5C | 6A | 6B | 7 | 8 |
|--------------------|-------|-------|----|----|----|----|----|----|----|----|----|----|----|----|---|---|
| Multifamily | 0.73 | 0.73 | 0.71 | 0.69 | 0.74 | 0.73 | 0.68 | 0.78 | 0.81 | 0.81 | 0.76 | 0.80 | 0.81 | 0.76 | 0.79 | 0.74 | 0.80 |
| Healthcare/hospital| 0.64 | 0.56 | 0.60 | 0.56 | 0.60 | 0.56 | 0.54 | 0.57 | 0.53 | 0.55 | 0.59 | 0.52 | 0.55 | 0.57 | 0.52 | 0.56 | 0.56 |
| Hotel/motel | 0.64 | 0.65 | 0.62 | 0.60 | 0.63 | 0.65 | 0.64 | 0.62 | 0.64 | 0.62 | 0.60 | 0.61 | 0.60 | 0.59 | 0.61 | 0.57 | 0.58 |
| Office | 0.58 | 0.62 | 0.57 | 0.62 | 0.60 | 0.64 | 0.54 | 0.58 | 0.60 | 0.58 | 0.60 | 0.61 | 0.58 | 0.61 | 0.61 | 0.57 | 0.61 |
| Restaurant | 0.62 | 0.62 | 0.58 | 0.61 | 0.60 | 0.60 | 0.61 | 0.58 | 0.55 | 0.60 | 0.62 | 0.58 | 0.60 | 0.63 | 0.60 | 0.65 | 0.68 |
| Retail | 0.52 | 0.58 | 0.53 | 0.58 | 0.54 | 0.62 | 0.60 | 0.55 | 0.60 | 0.60 | 0.59 | 0.61 | 0.55 | 0.58 | 0.53 | 0.53 |
| School | 0.46 | 0.53 | 0.47 | 0.53 | 0.49 | 0.52 | 0.50 | 0.49 | 0.50 | 0.49 | 0.50 | 0.50 | 0.49 | 0.50 | 0.49 | 0.47 | 0.51 |
| Warehouse | 0.51 | 0.52 | 0.56 | 0.58 | 0.57 | 0.59 | 0.63 | 0.58 | 0.60 | 0.63 | 0.60 | 0.61 | 0.65 | 0.66 | 0.66 | 0.67 | 0.67 |
| All others | 0.62 | 0.61 | 0.55 | 0.57 | 0.56 | 0.61 | 0.59 | 0.58 | 0.57 | 0.61 | 0.57 | 0.61 | 0.61 | 0.56 | 0.56 | 0.53 | 0.52 |

a. In cases where both a general building area type and a specific building area type are listed, the specific building area type shall apply
6. RENEWABLE ENERGY

6.1 Minimum Renewable Energy

On-site renewable energy systems shall be installed or off-site renewable energy shall be procured to offset the building energy.

\[RE_{\text{onsite}} + RE_{\text{offsite}} \geq E_{\text{building}} \]

where

- \(RE_{\text{onsite}} = \) annual site energy production from on-site renewable energy systems (see 6.2)
- \(RE_{\text{offsite}} = \) adjusted annual site energy production from off-site renewable energy systems that may be credited against building energy use (see 6.3)
- \(E_{\text{building}} = \) building energy use without consideration of renewable energy systems.

When 5.1 is used to comply with the minimum energy efficiency requirement, building energy shall be determined by multiplying the gross conditioned floor area plus the gross semiheated floor area of the proposed building by an EUI selected from Table 6.1. Use a weighted average for mixed-use buildings.

When 5.2 is used to comply with the minimum energy efficiency requirement, building energy shall be determined from energy simulations following the guidelines of the performance rating method of Standard 90.1-2016 Appendix G.

[Informative Note: The Architecture 2030 ZERO Code Energy Calculator can be used to estimate building energy use and renewable energy requirements.]
Table 6.1 Energy Utilization Intensity for Building Types and Climates
(kWh/m²·y; MJ m²·y; kBtu/ft²·y)

<table>
<thead>
<tr>
<th>Building Area Type</th>
<th>Climate Zone</th>
<th>kWh/m²·y</th>
<th>MJ/m²·y</th>
<th>kBtu/ft²·y</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0A/1A</td>
<td>0B/1B</td>
<td>2A</td>
<td>2B</td>
</tr>
<tr>
<td>Multifamily</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Healthcare/hospital</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Restaurant</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Retail</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>School</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Warehouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All others</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Informative Note: Energy Utilization Intensities provided in this table are provided as a default and used to establish the renewable energy requirement per Section 6.1. They are based on typical building operating conditions and fuel mixes for the United States. The performance approach is recommended for buildings with when these conditions are significantly different. Also, these default tables may be modified when the ZERO Code is adapted for other countries, especially when an alternative energy efficiency standard is substituted for Standard 90.1-2016.]

Architecture 2030, November 1, 2018
6.2 Calculation of On-Site Renewable Energy

The annual energy production from on-site renewable energy systems shall be determined using the PVWatts software or other software approved by the authority having jurisdiction.

6.3 Off-Site Renewable Energy

6.3.1 Qualifying Off-Site Renewable Energy Procurement Methods

1. **Community Renewables**: an offsite renewable energy system for which the owner has purchased or leased renewable energy capacity along with other subscribers.

2. **Renewable Energy Investment Fund**: an entity that installs renewable energy capacity on behalf of the owner to offset building energy.

3. **Virtual Power Purchase Agreement**: a power purchase agreement for offsite renewable energy where the owner agrees to purchase renewable energy output at a fixed price schedule.

4. **Direct Ownership**: an offsite renewable energy system owned by the building project owner.

5. **Direct Access to Wholesale Market**: an agreement between the owner and a renewable energy developer to purchase renewable energy.

6. **Green Retail Tariffs**: a program by the retail electricity provider to provide 100% renewable energy to the owner.

7. **Unbundled Renewable Energy Certificates (RECs)**: certificates purchased by the owner representing the environmental benefits of renewable energy generation that are sold separately from the electric power.

[Informative Note]: The qualifying off-site renewable energy procurement methods listed above are provided as a default. They are based on methods available in the United States and the judgment of the standards development team at Architecture 2030. When the ZERO Code is adapted for other countries or jurisdictions, the qualifying procurement options should be customized for that region. A technical support document is available from Architecture 2030 to assist in this process.]
6.3.2 General Requirements

The following requirements apply to all off-site renewable energy procurement methods.

1. The building owner shall sign a legally binding contract to procure qualifying off-site renewable energy.

2. The procurement contract shall have duration of not less than 15 years and shall be structured to survive a partial or full transfer of ownership of the property.

3. RECs and other environmental attributes associated with the procured off-site renewable energy shall be assigned to the building project for the duration of the contract.

4. The renewable energy generating source(s) shall be photovoltaic systems, solar thermal power plants, geothermal power plants, and/or wind turbines.

5. The generation source shall be located where the energy can be delivered to the building site by the same utility or distribution entity; the same ISO or RTO; or within integrated ISOs (electric coordination council).

6. The off-site renewable energy producer shall maintain transparent accounting that clearly assigns production to the ZNC building. Records on power sent to or purchased by the building shall be retained by the building owner and made available for inspection by the authority having jurisdiction upon request.

6.3.3 Adjusted Off-Site Renewable Energy

The process for calculating the adjusted off-site renewable energy is shown in the following equation:

\[
RE_{offsite} = \sum_{i=1}^{n} C_i \cdot RE_i = C_1 \cdot RE_1 + C_2 \cdot RE_2 + \cdots + C_n \cdot RE_n
\]

where

\[
RE_{offsite} = \text{Adjusted off-site renewable energy}
\]

\[
C_i = \text{Coefficient or multiplier for the } i^{th} \text{ renewable energy procurement method or class taken from Table 6.3.}
\]

\[
RE_i = \text{Annual energy production for the } i^{th} \text{ renewable energy procurement method or class}
\]

\[
n = \text{The number of renewable energy procurement options or classes considered}
\]
Table 6.3 Default Off-Site Renewable Energy Procurement Methods, Classes, and Coefficients

<table>
<thead>
<tr>
<th>Class</th>
<th>Coefficient</th>
<th>Procurement Options</th>
<th>Additional Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.75</td>
<td>Community Solar</td>
<td>REIFs: Entity must be managed to prevent fraud or misuse of funds.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Virtual PPA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Self-Owned Off-Site</td>
<td>Provisions shall prevent the generation from being sold separately from the building.</td>
</tr>
<tr>
<td>2</td>
<td>0.55</td>
<td>Green Retail Tariffs</td>
<td>The offering shall not include the purchase of unbundled RECs.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Direct Access</td>
<td>The offering shall not include the purchase of unbundled RECs.</td>
</tr>
<tr>
<td>3</td>
<td>0.20</td>
<td>Unbundled RECs</td>
<td>The vintage of the RECs shall align with building energy use.</td>
</tr>
</tbody>
</table>

[Informative Note: The procurement options and coefficients in this table are provided as a default. They are based on conditions in the United States and the judgment of the standards development team at Architecture 2030. When the ZERO Code is adapted for other countries or jurisdictions, the qualifying procurement options and the coefficients should be customized for that region. A technical support document is available from Architecture 2030 to assist in this process.]

7. REFERENCES

ANSI/ASHRAE/IES Standard 90.1-2016, ASHRAE, 1791 Tullie Circle NE, Atlanta, GA 30329, United States,

Center for Resource Solutions, Green-e Energy National Standard for Renewable Electricity Products.